-continued

	000					0.05					200				
	290					295					300				
Ser 305	Ile	Leu	Pro	Gly	Ile 310	Gly	Ser	Val	Met	Gly 315	Ile	Ala	Asp	Gly	Ala 320
Val	His	His	Asn	Thr 325	Glu	Glu	Ile	Val	Ala 330	Gln	Ser	Ile	Ala	Leu 335	Ser
Ser	Leu	Met	Val 340	Ala	Gln	Ala	Ile	Pro 345	Leu	Val	Gly	Glu	Leu 350	Val	Asp
Ile	Gly	Phe 355	Ala	Ala	Tyr	Asn	Phe 360	Val	Glu	Ser	Ile	Ile 365	Asn	Leu	Phe
Gln	Val 370	Val	His	Asn	Ser	Tyr 375	Asn	Arg	Pro	Ala	Tyr 380	Ser	Pro	Gly	His
Lуа 385	Thr	Gln	Pro	Phe	Glu 390	Ala	Ser	Gly	Gly	Pro 395	Glu	Asn	Ser	Asp	Ser 400
Glu	Сув	Pro	Leu	Ser 405	His	Asp	Gly	Tyr	Cys 410	Leu	His	Asp	Gly	Val 415	Сув
Met	Tyr	Ile	Glu 420	Ala	Leu	Asp	Lys	Tyr 425	Ala	Cys	Asn	Cys	Val 430	Val	Gly
Tyr	Ile	Gly 435	Glu	Arg	Cys	Gln	Tyr 440	Arg	Asp	Leu	Lys	Trp 445	Trp	Glu	Leu
Arg															

1. A compound of formula (I):

$$(PEG)_{m} \longrightarrow (X)_{p} \longrightarrow L^{2} \longrightarrow D^{2} \longrightarrow [L^{4} \longrightarrow (R^{2})]_{y}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

wherein

PEG is optionally present and is a polyethylene glycol moiety, wherein PEG has a molecular weight of 44 Da to 100 kDa;

X is optionally present and is a branched monomer unit; each L^1 is independently optional and is a linker group; each L^2 is independently optional and is a linker group; each L^3 is independently optional and is a linker group; each L^4 is independently optional and is a linker group; D^1 is optional and is a dendritic polymer moiety having one or more branched monomer units (X), and a plurality of end groups;

- D² is a dendritic polymer having one or more branched monomer units (X), and a plurality of end groups;
- R¹ is optional and is an end group of the dendritic polymer and is independently at each occurrence in the compound selected from the group consisting of crosslinkable groups;
- R² is an end group of the dendritic polymer and is independently at each occurrence in the compound selected from the group consisting of positively or negatively charged groups and neutral groups (e.g., polar groups: sugars, peptides, hydrophilic polymers,

or hydrophobic groups: long-chain alkanes (C_1-C_{50}) and fatty acids (C_1-C_{50}) , aromatic molecules, esters, halogens, nitrocompounds, anthracyclines, fluorocarbons, silicones, certain steroids such as cholesterol, terpenoids, vitamins, and polymers, and amphiphilic groups, cholic acid, riboflavin, chlorogenic acid), where at least one positively or negatively charged groups are present in \mathbb{R}^2 ;

subscript x is an integer from 1 to 64, wherein subscript x is equal to the number of end groups on the dendritic polymer:

subscript y is an integer from 1 to 64, wherein subscript y is equal to the number of end groups on the dendritic polymer;

subscript p is an integer from 0 to 32; and subscript m is an integer from 0 to 32.

- 2. The compound of claim 1, wherein at each occurrence in the compound the branched monomer unit (X) is independently selected from the group consisting of a diamino carboxylic acid moiety, a dihydroxy carboxylic acid moiety, and a hydroxyl amino carboxylic acid moiety.
- 3. The compound of claim 2, wherein at each occurrence in the compound the diamino carboxylic acid is independently selected from the group consisting of 2,3-diamino propanoic acid, 2,4-diaminobutanoic acid, 2,5-diaminopentanoic acid (ornithine), 2,6-diaminohexanoic acid (lysine), (2-Aminoethyl)-cysteine, 3-amino-2-aminomethyl propanoic acid, 3-amino-2-aminomethyl-2-methyl propanoic acid, 4-amino-2-(2-aminoethyl) butyric acid, and 5-amino-2- β -aminopropyl) pentanoic acid.
- **4**. The compound of claim **2**, wherein the diamino carboxylic acid moiety is an amino acid moiety.
- 5. The compound of claim 1, wherein each branched monomer unit X is lysine moiety.